
    ިsg                     V    d Z ddlmZ ddlZdgZ ej                  d      dd       Zy)	z;Functions for computing the harmonic centrality of a graph.    )partialNharmonic_centralitydistance)
edge_attrsc                 &   t        || j                  |      n| j                        }t        || j                  |      n| j                        }|D ci c]  }|d }}d}t        |      t        |      k  r2d}||}}t	        j
                  |       rt	        j                  | d      } t        t        j                  | |      }|D ]?  } ||      }	|j                  |	      D ]!  }|	|   }
|
dk(  r||r|n|xx   d|
z  z  cc<   # A |S c c}w )a%  Compute harmonic centrality for nodes.

    Harmonic centrality [1]_ of a node `u` is the sum of the reciprocal
    of the shortest path distances from all other nodes to `u`

    .. math::

        C(u) = \sum_{v \neq u} \frac{1}{d(v, u)}

    where `d(v, u)` is the shortest-path distance between `v` and `u`.

    If `sources` is given as an argument, the returned harmonic centrality
    values are calculated as the sum of the reciprocals of the shortest
    path distances from the nodes specified in `sources` to `u` instead
    of from all nodes to `u`.

    Notice that higher values indicate higher centrality.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    nbunch : container (default: all nodes in G)
      Container of nodes for which harmonic centrality values are calculated.

    sources : container (default: all nodes in G)
      Container of nodes `v` over which reciprocal distances are computed.
      Nodes not in `G` are silently ignored.

    distance : edge attribute key, optional (default=None)
      Use the specified edge attribute as the edge distance in shortest
      path calculations.  If `None`, then each edge will have distance equal to 1.

    Returns
    -------
    nodes : dictionary
      Dictionary of nodes with harmonic centrality as the value.

    See Also
    --------
    betweenness_centrality, load_centrality, eigenvector_centrality,
    degree_centrality, closeness_centrality

    Notes
    -----
    If the 'distance' keyword is set to an edge attribute key then the
    shortest-path length will be computed using Dijkstra's algorithm with
    that edge attribute as the edge weight.

    References
    ----------
    .. [1] Boldi, Paolo, and Sebastiano Vigna. "Axioms for centrality."
           Internet Mathematics 10.3-4 (2014): 222-262.
    r   FT)copy)weight   )
setnbunch_iternodeslennxis_directedreverser   shortest_path_lengthintersection)Gnbunchr   sourcesu
centrality
transposedsplvdistds              Z/var/www/html/venv/lib/python3.12/site-packages/networkx/algorithms/centrality/harmonic.pyr   r   
   s   t &*<v&!''JFG,?!--(QWWMG &'1!Q$'J'J
6{S\!
!6>>!

15)A
"))1X
>C 81v$$T* 	8AQAAvJqA.!a%7.		88 % (s   
D)NNN)__doc__	functoolsr   networkxr   __all___dispatchabler        r   <module>r&      s9    A   
! Z(N )Nr%   