
    ިsgG                        d Z ddlZddlmZ g dZ ed       ej                  d      dd              Z ed       ej                  d      dd	              Z ed       ej                  d      dd
              Z	y)zTrophic levels    N)not_implemented_for)trophic_levelstrophic_differencestrophic_incoherence_parameter
undirectedweight)
edge_attrsc                    ddl }t        j                  | |      j                  j	                         }|j                  |d      }||dk7     dd|dk7  f   }|||dk7     dd|j                  f   z  }|j                  d   }|j                  |      }	 |j                  j                  ||z
        }|j                  d      dz   }i }d | j                  D        }|D ]  }d||<   	 d | j                  D        }t        |      D ]  \  }}|j                  |      ||<    |S # |j                  j                  $ r}	d}
t        j                  |
      |	d}	~	ww xY w)	a  Compute the trophic levels of nodes.

    The trophic level of a node $i$ is

    .. math::

        s_i = 1 + \frac{1}{k^{in}_i} \sum_{j} a_{ij} s_j

    where $k^{in}_i$ is the in-degree of i

    .. math::

        k^{in}_i = \sum_{j} a_{ij}

    and nodes with $k^{in}_i = 0$ have $s_i = 1$ by convention.

    These are calculated using the method outlined in Levine [1]_.

    Parameters
    ----------
    G : DiGraph
        A directed networkx graph

    Returns
    -------
    nodes : dict
        Dictionary of nodes with trophic level as the value.

    References
    ----------
    .. [1] Stephen Levine (1980) J. theor. Biol. 83, 195-207
    r   Nr      )axiszTrophic levels are only defined for graphs where every node has a path from a basal node (basal nodes are nodes with no incoming edges).c              3   2   K   | ]  \  }}|d k(  s|  ywr   N .0node_iddegrees      Y/var/www/html/venv/lib/python3.12/site-packages/networkx/algorithms/centrality/trophic.py	<genexpr>z!trophic_levels.<locals>.<genexpr>I   s     O&6Q;WO   c              3   2   K   | ]  \  }}|d k7  s|  ywr   r   r   s      r   r   z!trophic_levels.<locals>.<genexpr>N   s     ROGVfPQkRr   )numpynxadjacency_matrixTtoarraysumnewaxisshapeeyelinalginvLinAlgErrorNetworkXError	in_degree	enumerateitem)Gr   nparowsumpnninerrmsgylevelszero_node_idsr   nonzero_node_idss                   r   r   r   	   sr   F  	Af-//779A VVAAVF	&A+q&A+~&A	F6Q;2::..A 
B
r
A	-IIMM!a%  	
1AF PAKKOM  w Sq{{R 01 $
7&&)w$ M- 99   -) 	
 s#,-s   D& &E?EEc                 l    t        | |      }i }| j                  D ]  \  }}||   ||   z
  |||f<    |S )as  Compute the trophic differences of the edges of a directed graph.

    The trophic difference $x_ij$ for each edge is defined in Johnson et al.
    [1]_ as:

    .. math::
        x_ij = s_j - s_i

    Where $s_i$ is the trophic level of node $i$.

    Parameters
    ----------
    G : DiGraph
        A directed networkx graph

    Returns
    -------
    diffs : dict
        Dictionary of edges with trophic differences as the value.

    References
    ----------
    .. [1] Samuel Johnson, Virginia Dominguez-Garcia, Luca Donetti, Miguel A.
        Munoz (2014) PNAS "Trophic coherence determines food-web stability"
    r   )r   edges)r)   r   r4   diffsuvs         r   r   r   U   sK    8 Af-FE .1q	F1I-q!f.L    c                 .   ddl }|rt        | |      }nQt        t        j                  |             }|r"| j                         }|j                  |       n| }t        ||      }t        |j                  t        |j                                           S )a+  Compute the trophic incoherence parameter of a graph.

    Trophic coherence is defined as the homogeneity of the distribution of
    trophic distances: the more similar, the more coherent. This is measured by
    the standard deviation of the trophic differences and referred to as the
    trophic incoherence parameter $q$ by [1].

    Parameters
    ----------
    G : DiGraph
        A directed networkx graph

    cannibalism: Boolean
        If set to False, self edges are not considered in the calculation

    Returns
    -------
    trophic_incoherence_parameter : float
        The trophic coherence of a graph

    References
    ----------
    .. [1] Samuel Johnson, Virginia Dominguez-Garcia, Luca Donetti, Miguel A.
        Munoz (2014) PNAS "Trophic coherence determines food-web stability"
    r   Nr   )
r   r   listr   selfloop_edgescopyremove_edges_fromfloatstdvalues)r)   r   cannibalismr*   r9   
self_loopsG_2s          r   r   r   x   s{    8 #Af5 "++A./
&&(C!!*- C#C7U\\^,-..r<   r   )r   F)
__doc__networkxr   networkx.utilsr   __all___dispatchabler   r   r   r   r<   r   <module>rM      s      .
T \"X&G ' #GT \"X& ' #B \"X&)/ ' #)/r<   