
    ިsg{D                        d Z ddlmZ ddlmZ ddlmZ ddlZddl	m
Z
 ddlmZ dd	gZ ej                  d
      dd       ZddZddZ ed       ed       ej                  d
      d                      Zd Zd Zd ZddZy)z%Functions for generating line graphs.    )defaultdict)partial)combinationsN)arbitrary_element)not_implemented_for
line_graphinverse_line_graphT)returns_graphc                 `    | j                         rt        | |      }|S t        | d|      }|S )a  Returns the line graph of the graph or digraph `G`.

    The line graph of a graph `G` has a node for each edge in `G` and an
    edge joining those nodes if the two edges in `G` share a common node. For
    directed graphs, nodes are adjacent exactly when the edges they represent
    form a directed path of length two.

    The nodes of the line graph are 2-tuples of nodes in the original graph (or
    3-tuples for multigraphs, with the key of the edge as the third element).

    For information about self-loops and more discussion, see the **Notes**
    section below.

    Parameters
    ----------
    G : graph
        A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph.
    create_using : NetworkX graph constructor, optional (default=nx.Graph)
       Graph type to create. If graph instance, then cleared before populated.

    Returns
    -------
    L : graph
        The line graph of G.

    Examples
    --------
    >>> G = nx.star_graph(3)
    >>> L = nx.line_graph(G)
    >>> print(sorted(map(sorted, L.edges())))  # makes a 3-clique, K3
    [[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]]

    Edge attributes from `G` are not copied over as node attributes in `L`, but
    attributes can be copied manually:

    >>> G = nx.path_graph(4)
    >>> G.add_edges_from((u, v, {"tot": u + v}) for u, v in G.edges)
    >>> G.edges(data=True)
    EdgeDataView([(0, 1, {'tot': 1}), (1, 2, {'tot': 3}), (2, 3, {'tot': 5})])
    >>> H = nx.line_graph(G)
    >>> H.add_nodes_from((node, G.edges[node]) for node in H)
    >>> H.nodes(data=True)
    NodeDataView({(0, 1): {'tot': 1}, (2, 3): {'tot': 5}, (1, 2): {'tot': 3}})

    Notes
    -----
    Graph, node, and edge data are not propagated to the new graph. For
    undirected graphs, the nodes in G must be sortable, otherwise the
    constructed line graph may not be correct.

    *Self-loops in undirected graphs*

    For an undirected graph `G` without multiple edges, each edge can be
    written as a set `\{u, v\}`.  Its line graph `L` has the edges of `G` as
    its nodes. If `x` and `y` are two nodes in `L`, then `\{x, y\}` is an edge
    in `L` if and only if the intersection of `x` and `y` is nonempty. Thus,
    the set of all edges is determined by the set of all pairwise intersections
    of edges in `G`.

    Trivially, every edge in G would have a nonzero intersection with itself,
    and so every node in `L` should have a self-loop. This is not so
    interesting, and the original context of line graphs was with simple
    graphs, which had no self-loops or multiple edges. The line graph was also
    meant to be a simple graph and thus, self-loops in `L` are not part of the
    standard definition of a line graph. In a pairwise intersection matrix,
    this is analogous to excluding the diagonal entries from the line graph
    definition.

    Self-loops and multiple edges in `G` add nodes to `L` in a natural way, and
    do not require any fundamental changes to the definition. It might be
    argued that the self-loops we excluded before should now be included.
    However, the self-loops are still "trivial" in some sense and thus, are
    usually excluded.

    *Self-loops in directed graphs*

    For a directed graph `G` without multiple edges, each edge can be written
    as a tuple `(u, v)`. Its line graph `L` has the edges of `G` as its
    nodes. If `x` and `y` are two nodes in `L`, then `(x, y)` is an edge in `L`
    if and only if the tail of `x` matches the head of `y`, for example, if `x
    = (a, b)` and `y = (b, c)` for some vertices `a`, `b`, and `c` in `G`.

    Due to the directed nature of the edges, it is no longer the case that
    every edge in `G` should have a self-loop in `L`. Now, the only time
    self-loops arise is if a node in `G` itself has a self-loop.  So such
    self-loops are no longer "trivial" but instead, represent essential
    features of the topology of `G`. For this reason, the historical
    development of line digraphs is such that self-loops are included. When the
    graph `G` has multiple edges, once again only superficial changes are
    required to the definition.

    References
    ----------
    * Harary, Frank, and Norman, Robert Z., "Some properties of line digraphs",
      Rend. Circ. Mat. Palermo, II. Ser. 9 (1960), 161--168.
    * Hemminger, R. L.; Beineke, L. W. (1978), "Line graphs and line digraphs",
      in Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory,
      Academic Press Inc., pp. 271--305.

    )create_usingF)	selfloopsr   )is_directed_lg_directed_lg_undirected)Gr   Ls      K/var/www/html/venv/lib/python3.12/site-packages/networkx/generators/line.pyr   r      s6    L 	}}6 H 1LIH    c                 .   t        j                  d|| j                        }| j                         rt	        | j
                  d      n| j
                  } |       D ]5  }|j                  |        ||d         D ]  }|j                  ||        7 |S )a6  Returns the line graph L of the (multi)digraph G.

    Edges in G appear as nodes in L, represented as tuples of the form (u,v)
    or (u,v,key) if G is a multidigraph. A node in L corresponding to the edge
    (u,v) is connected to every node corresponding to an edge (v,w).

    Parameters
    ----------
    G : digraph
        A directed graph or directed multigraph.
    create_using : NetworkX graph constructor, optional
       Graph type to create. If graph instance, then cleared before populated.
       Default is to use the same graph class as `G`.

    r   defaultTkeys   )nxempty_graph	__class__is_multigraphr   edgesadd_nodeadd_edge)r   r   r   	get_edges	from_nodeto_nodes         r   r   r   {   s      	q,<A 01/@d+aggI[ +		

9 1. 	+GJJy'*	++ Hr   c                    t        j                  d|| j                        }| j                         rt	        | j
                  d      n| j
                  }|rdnd}t        |       D ci c]  \  }}||
 c}}fd}t               }	| D ]  }
 ||
      D cg c]+  }t        t        |dd j                  	            |dd z   - }}t        |      dk(  r|j                  |d          t        |      D ]@  \  }}|	j                  |||z   d D cg c]  }t        t        ||f|	             c}       B  |j                  |	       |S c c}}w c c}w c c}w )
a  Returns the line graph L of the (multi)graph G.

    Edges in G appear as nodes in L, represented as sorted tuples of the form
    (u,v), or (u,v,key) if G is a multigraph. A node in L corresponding to
    the edge {u,v} is connected to every node corresponding to an edge that
    involves u or v.

    Parameters
    ----------
    G : graph
        An undirected graph or multigraph.
    selfloops : bool
        If `True`, then self-loops are included in the line graph. If `False`,
        they are excluded.
    create_using : NetworkX graph constructor, optional (default=nx.Graph)
       Graph type to create. If graph instance, then cleared before populated.

    Notes
    -----
    The standard algorithm for line graphs of undirected graphs does not
    produce self-loops.

    r   r   Tr   r   c                 $    | d      | d      fS )Nr   r    )edge
node_indexs    r   <lambda>z _lg_undirected.<locals>.<lambda>   s    ja&9:d1g;N%O r   N   )key)r   r   r   r   r   r   	enumeratesettuplesortedgetlenr    updateadd_edges_from)r   r   r   r   r"   shiftinedge_key_functionr   uxnodesabr)   s                  @r   r   r      s[   0 	q,<A 01/@d+aggI AE $-Q<041a!Q$0J PEE  LUUV<Xavae89AabEAXXu:?JJuQx 
 e$ 	DAqLL #1u9;/ &!Q->?@	* UH9 1 Ys   +E0EEdirected
multigraphc                   
 | j                         dk(  rt        j                  d      S | j                         dk(  r-t        |       }|df}|dft        j                  |fg      }|S | j                         dkD  r*| j                         dk(  rd}t        j                  |      t        j                  |       dk7  rd}t        j                  |      t        |       }t        | |      }| j                  D ci c]  }|d c}
|D ]  }|D ]  }
|xx   dz  cc<     t        
j                               dkD  rd}t        j                  |      t        
fd
D              }	t        j                         }|j                  |       |j                  |	       t        |j                  d      D ],  \  }t!        fd|D              s|j#                  |       . |S c c}w )	af  Returns the inverse line graph of graph G.

    If H is a graph, and G is the line graph of H, such that G = L(H).
    Then H is the inverse line graph of G.

    Not all graphs are line graphs and these do not have an inverse line graph.
    In these cases this function raises a NetworkXError.

    Parameters
    ----------
    G : graph
        A NetworkX Graph

    Returns
    -------
    H : graph
        The inverse line graph of G.

    Raises
    ------
    NetworkXNotImplemented
        If G is directed or a multigraph

    NetworkXError
        If G is not a line graph

    Notes
    -----
    This is an implementation of the Roussopoulos algorithm[1]_.

    If G consists of multiple components, then the algorithm doesn't work.
    You should invert every component separately:

    >>> K5 = nx.complete_graph(5)
    >>> P4 = nx.Graph([("a", "b"), ("b", "c"), ("c", "d")])
    >>> G = nx.union(K5, P4)
    >>> root_graphs = []
    >>> for comp in nx.connected_components(G):
    ...     root_graphs.append(nx.inverse_line_graph(G.subgraph(comp)))
    >>> len(root_graphs)
    2

    References
    ----------
    .. [1] Roussopoulos, N.D. , "A max {m, n} algorithm for determining the graph H from
       its line graph G", Information Processing Letters 2, (1973), 108--112, ISSN 0020-0190,
       `DOI link <https://doi.org/10.1016/0020-0190(73)90029-X>`_

    r   r   zninverse_line_graph() doesn't work on an edgeless graph. Please use this function on each component separately.zA line graph as generated by NetworkX has no selfloops, so G has no inverse line graph. Please remove the selfloops from G and try again.r+   zEG is not a line graph (vertex found in more than two partition cells)c              3   6   K   | ]  }|   d k(  s|f  yw)r   Nr'   ).0r9   P_counts     r   	<genexpr>z%inverse_line_graph.<locals>.<genexpr>/  s     7qwqzQqd7s   c              3   &   K   | ]  }|v  
 y wNr'   )rB   a_bitr=   s     r   rD   z%inverse_line_graph.<locals>.<genexpr>4  s     )euz)s   )number_of_nodesr   r   r   Graphnumber_of_edgesNetworkXErrornumber_of_selfloops_select_starting_cell_find_partitionr;   maxvaluesr/   add_nodes_fromr   anyr!   )r   vr<   Hmsgstarting_cellPr9   pWrC   r=   s             @@r   r	   r	      s   j 	a~~a  	
				!a FFHHq!fX	
			q	 Q%6%6%8A%=E 	 s##	a A%T 	 s##)!,M=)AWW%q!t%G  	AAJ!OJ	 7>>q Us##7G77A

AQQQWWa( 1)q))JJq! H &s   <
G(c                     |\  }}|| vrt        j                  d| d      || |   vrt        j                  d| d| d      g }| |   D ]  }|| |   v s|j                  |||f         |S )z.Return list of all triangles containing edge eVertex  not in graphEdge (, ) not in graph)r   rK   append)r   er9   rS   triangle_listr:   s         r   
_trianglesrc   9  s    DAqz=9::!}s"QC~>??MqT ,!9  !Q+, r   c                    |D ]-  }|| j                         vst        j                  d| d       t        t	        |d            D ]1  }|d   | |d      vst        j                  d|d    d|d    d       t        t              |D ]  }| |   D ]  }||vs|xx   dz  cc<      t        fd	D              S )
a  Test whether T is an odd triangle in G

    Parameters
    ----------
    G : NetworkX Graph
    T : 3-tuple of vertices forming triangle in G

    Returns
    -------
    True is T is an odd triangle
    False otherwise

    Raises
    ------
    NetworkXError
        T is not a triangle in G

    Notes
    -----
    An odd triangle is one in which there exists another vertex in G which is
    adjacent to either exactly one or exactly all three of the vertices in the
    triangle.

    r[   r\   r+   r   r   r]   r^   r_   c              3   ,   K   | ]  }|   d v   yw))r      Nr'   )rB   rS   T_nbrss     r   rD   z _odd_triangle.<locals>.<genexpr>l  s     3qvayF"3s   )r;   r   rK   listr   r   intrR   )r   Tr9   ra   trS   rg   s         @r   _odd_trianglerl   G  s    2  ?AGGI""WQC}#=>>? ,q!$% JQ4q1w""VAaD6AaD6#HIIJ F 1 	Azq	Q		 3F333r   c                 ,   | j                         }|g}|j                  t        t        |d                   t        |      }|j	                         dkD  r|j                         }t        ||         }|dk7  r|gt        ||         z   }|D ]-  }|D ]&  }||k7  s	|||   vsd}	t        j                  |	       / |j                  t        |             |j                  t        t        |d                   ||z  }|j	                         dkD  r|S )ai  Find a partition of the vertices of G into cells of complete graphs

    Parameters
    ----------
    G : NetworkX Graph
    starting_cell : tuple of vertices in G which form a cell

    Returns
    -------
    List of tuples of vertices of G

    Raises
    ------
    NetworkXError
        If a cell is not a complete subgraph then G is not a line graph
    r+   r   z>G is not a line graph (partition cell not a complete subgraph))copyremove_edges_fromrh   r   rJ   popr2   r   rK   r`   r/   )
r   rV   G_partitionrW   partitioned_verticesr9   deg_unew_cellrS   rU   s
             r   rN   rN   o  s%   " &&(K	A!!$|M1'E"FG.

%
%
'!
+ $$&KN#A: sT+a.11H 4! 4AQQk!n%<G  !..s3344 HHU8_%))$|Ha/H*IJ H, ' 
%
%
'!
+( Hr   c                    |t        | j                               }nd|}|d   | j                         vrt        j                  d|d    d      |d   | |d      vr$d|d    d|d    d}t        j                  |      t        | |      }t        |      }|dk(  r|}|S |dk(  re|d   }|\  }}	}
t        t        | ||
f            }t        t        | |	|
f            }|dk(  r|dk(  r|}|S t        | |	|
f      S t        | ||
f      S d}g }|D ]%  }t        | |      s|dz  }|j                  |       ' |d	k(  r	|dk(  r}|S |dz
  |cxk  r|k  rkn nht               }|D ]  }|D ]  }|j                  |         |D ]-  }|D ]&  }||k7  s	|| |   vsd
}t        j                  |       / t        |      }|S d}t        j                  |      )a_  Select a cell to initiate _find_partition

    Parameters
    ----------
    G : NetworkX Graph
    starting_edge: an edge to build the starting cell from

    Returns
    -------
    Tuple of vertices in G

    Raises
    ------
    NetworkXError
        If it is determined that G is not a line graph

    Notes
    -----
    If starting edge not specified then pick an arbitrary edge - doesn't
    matter which. However, this function may call itself requiring a
    specific starting edge. Note that the r, s notation for counting
    triangles is the same as in the Roussopoulos paper cited above.
    r   r[   r\   r   zstarting_edge (r^   z) is not in the Graph)starting_edger+   zCG is not a line graph (odd triangles do not form complete subgraph)zNG is not a line graph (incorrect number of odd triangles around starting edge))r   r   r;   r   rK   rc   r2   rM   rl   r`   r.   addr/   )r   rv   ra   rU   e_trianglesrrV   rj   r<   r=   cac_edgesbc_edgessodd_trianglestriangle_nodesr:   r9   rS   s                      r   rM   rM     sb   0 aggi(Q4qwwy ""WQqTF-#@AAQ4q1w#AaD6AaD61FGC""3''Q"KKAAvf e 
a N1az!aV,-z!aV,-q=1} !P M -Qq!fEE(1a&AA  	(AQ"Q$$Q'	( 6a1fM2 1 Ua_1_ UN" * *A"&&q)** $ 4' 4AAv1AaD==  !..s3344 ".1M 	6  ""3''r   rF   )FN)__doc__collectionsr   	functoolsr   	itertoolsr   networkxr   networkx.utilsr   networkx.utils.decoratorsr   __all___dispatchabler   r   r   r	   rc   rl   rN   rM   r'   r   r   <module>r      s    + #  "  , 9-
. %i &iX<=@ Z \"%Z & # !Zz%4P*ZXr   