
    sgS              $           d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZ d dlmZmZmZ d dlmZ d d	lmZ d d
lmZmZmZmZmZ d dlmZ d dlmZmZ d dl m!Z!m"Z" d dl#m$Z$m%Z% d dl&m'Z'm(Z( d dl)m*Z*m+Z+m,Z,m-Z- d dl.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4 d dl5m6Z6 d dl7m8Z8 d dlm9Z9m:Z:m;Z;m<Z<m=Z=m>Z> d dl?m@Z@mAZAmBZB d dlCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZM ddlNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZY  ed      ZZeZdu Z[d Z\d Z]efdZ^d ed      fd  ed       fd! ed"      fd# ed#      fd$ ed%      fd& ed%      fd' ed(      fd) ed(      fd* ed+      fd, ed-      fd. ed/      fd0 ed1      fgZ_d2d3d4d5 eRd6d7      fd8 eQdd      fd9 eQd d      fd: eRdd;      fd< eRd d      fd+eDfd=d;eDz  fd> eQ eRd?eD      d@      fdAeI fdBefdCeGeHz  fdD eRdd;      fdEeGeHz  fdFeGeHz  fdGeGeHz   fdH eQeGeHz   eG       fdI eR eQeDeE      eF      fdJ eQ eR edK      eH       eReG edL                  fgZ`dMdNdOdPdQd=d;eDz  fd>d?eDz  dz
  fdAeI fdCeGeHz  fdRdEeGeHz  fdFeGeHz  fdGeGeHz   fdHeHfdIeDeEz   eFz  fgZadSeGeHz  fdTeGeHz  fdUeGeHz  fdV eRd eSd;d@            fdW eR eRd eSd;d@            eE      fdX eR eRd eSd;d@            dY      fdZ eRd; eSd?d@            fd[ eReGeHz    eSeId@            fd\ eRd] eSd?d@            fg	ZbdSeGeHz  fdTeGeHz  fdUeGeHz  fdV edd;      fdWeEd;z  fd^dZ ed;d?      fd[eGeHz   eIz  fd\ ed]d?      fg	Zcd_ e9eDeE      fd` e:eDeE      fda e;eDeE      fdb e=eDeE      fdc e<eDeE      fdd e>eDeE      fde e<eDeE      fdf e>eDeE      fda eeDeE      fdc eeDeE      fdb eeDeE      fdd eeDeE      fd` eeDeE      fdg e9eGd;z  eHd;z  z   eId;z        fgZddheDd;z  fdi eSeD eRd eSd;d@                  fdjeD eQd?d      z  fdk edl       eVeDeEz        z  fdm eQ eSdnd        eRd@ eSdod                   fgZedheDd;z  fdi e+eD      fdjeDdoz  fdk edl       eVeDeEz        z  fdpgZfdq e6 eRdeD      eD      fdr e6 eRdeD      eD      fds e6 eRdeD      eO      fdt e6 eRdeDd;z  eEz
        eD      fdu e6 eRd eQeDeG            eD      fdv e6 eRdd      eG      fdw e6 eRdd      eDd d]f      fdx e6 eRdeD      eDd df      fdy e6 eRdeD      eDeGeHf      fdz e6 eRdeD      eDeGeHf      fd{ e6 eRdeD      eDeGeHf      fd| e6 eRdeD      eDeGeHf      fd} e6 eRdeD      eDeGeHf      fd~ e6 eRdeD      eDeGeHf      fd e6 ePeF      eF ePeG       ePeH      f      fd e6 eRd eQ eQeGeH      eI            eD      fd e6 eRd eRd eeFd@                  eF      fd e6 eRd eRd? eSeFd@                  eF      fd e6 eRd eRd eeDd@                  eD      fd e6 eRd eQ eRd eSeGd@             eRd eeHd@                        eD      fd e6 eRd eQ eRd eSeDd@            d            eD      fgZgdq e6eDeD      fdr e6eDeD      fds e6eDeO      fdt e6eDd;z  eEz
  eD      fdu e6eDeGz   eD      fdv e6deG      fdw e6deDd d]f      fdx e6eDeDd df      fdy e6eDeDeGeHf      fdz e6eDeDeGeHf      fd{ e6eDeDeGeHf      fd| e6eDeDeGeHf      fd} e6eDeDeGeHf      fd~ e6eDeDeGeHf      fd e6 ePeF      eF ePeG       ePeH      f      fd e6eGeHz   eIz   eD      fd e6 eeFd@      eF      fd e6d? eeFd@      z  eF      fd e6deDz  eD      fd e6deGz  deHz  z   eD      fd e6deDz  dz   eD      fgZhd eeDeD      fd eeDeK      fd e e4eD      eD      fd e ePeD      eD      fd e  ed      eD      eD      fgZid e3eO      fd e3eO      fd e/eG      fd eR e3eG       e0eH            fd e3 e0eO            fd e3 e0eO            fd e1eD       e2eE      z  fd eR e3eD       eSd;d@            fgZjd e8eGeDd?d      fd e8eGeDd?d      fd e8eGeDd?d      fd e8eGeDd?d      fd e8eGeDd?d      fd e8eGeDd?d      fd e8eGeDd?d      fd e8eGeDd?d      fd e8eGeDd?d      fd e8 eRd eSeDd@            eDe      fg
Zkd e8deDz  eDe      fgZld e+eD      fd e+ eQeDeH            fd eS e3eD       eSd?d@            fd e* e3eD      eE      fd e* e3eD      eO      fd eT eRd eSdd@                  fgZmd e+eD      fd e+eDeHz         fd e* e3eD      d?      fd e* e3eD      eE      fd e* e3eD      eO      fd e+d;      fgZnd eWeD      fd eWd      fd eWeO      fd eW eQeDd            fd eW eWeD            fd eW eW eWeD                  fd eR eWdn       eWd]            fgZod eeD      fd ed      fd eeO      fd eeDdz         fd e eeD            fd e e eeD                  fd edn       ed]      z  fgZpd e	 eRdeI      eLdd?f      fd e	 eRdeI      eLdd?f      fd e	 eRdeI      eLdd?f      fd e	 eRdeI      eLdd?f      fd e	 eRdeLd;z        eLddf      fd e	 eRd eRd eS eWeM      d@                  eMd ef      fgZqd e	eIeLdd?f      fd e	eIeLdd?f      fd e	eIeLdd?f      fd e	eIeLdd?f      fd e	eLd;z  eLddf      fd e	d eeM      z  eMd ef      fgZrd eeDeGeHeIf      fd eeDeGeHeIf      fd eeDeGeHeIf      fd eeDeGeHeIf      fgZsd ePeD      fd ePeDeE      fd ePeDeEeF      fd  ed      eD      fd  edë      eDeEz         fd  ed%       ed       ed             fgZtd eVeD      fd eV e!eD            fd eVeD       eVeE      z  fd eV eVeD       eVeE      z        fd e(eD      fd e'eD      fd eXeD      fd eXeD      fd e^eDd      fd e^eD      fd e^eDeEz        fd e^eD      fd e^eDeEz        fd e^eDd;      fd e^eDeG      fd e^eDdի      fd e^eD eSeGd;            fd e^eDd;      fd e^eDeG      fd eUeF      fd eU eUeF            fd eU eQeDeE            fd eUeD       eUeE      z   fd e\eGeH      fd e\eGeHeIeJz
  eDeEz        fd e]eGeH      fd e]eGeHeIeJz
  eDeEz        fd e@d+      fd eAd+      fd eB e@d+       eAd            fgZud e!eD      fd e! e!eD            fd e!eD       e!eE      z  fd e! e!eD       e!eE      z        fd e(eD      fd e'eD      fd e$eD      fd e$eD      fd e%eDd      fd e%eD      fd e%eDeEz        fd e%eD      fd e%eDeEz        fd e%eDd;      fd e%eDeG      fd e%eDdի      fd e%eD eSeGd;            fd e%eDd;      fd e%eDeG      fd e"eF      fd e" e"eF            fd e"eDeEz         fd e"eD       e"eE      z   fd e,eGeH      fd e,eGeHeIeJz
  eDeEz        fd e-eGeH      fd e-eGeHeIeJz
  eDeEz        fd e@d+      fd eAd+      fd eB e@d+       eAd            fgZvd eReGeH      fd eReGeH      fd eReGeH      fd eReGeH      fd eReGeH      fd eReGeH      fd eReGeH      fd eReGeH      fd eReGeH      fd eReGeH      fd eReGeH      fd eReGeH      fgZwd eYeMeL      fd eYeMeL      fd eYeMeL      fd eYeMd       fd eSeD eYeMeL            fgZxd eeMeL      fd eeMeL      fd eeMeL      fd eeMd       fdeD eeMeL      z  fgZyd eR eQeDeE      eF      fd eR eQeDeE      eF      fd eR eQeDeE      eF      fgZzd Z{d Z|d Z}d Z~d Zd Zd Zd  Zd Zd Zd Zd Zd Zed        Zd Zed        Zd	 Zd
 Zy(      )XFAIL)parse_latex_lark)import_module)Product)Sum)
DerivativeFunction)EooRational)Powevaluate)GreaterThanLessThanStrictGreaterThanStrictLessThan
Unequality)Symbol)binomial	factorial)Abs	conjugate)explog)ceilingfloor)rootsqrtMinMax)asincoscscsecsintan)Integral)Limit)EqNeLtLeGtGe)BraKetInnerProduct)
xyzabcdtkn   )thetaf_Add_Mul_Pow_Sqrt
_Conjugate_Abs
_factorial_exp	_binomiallarkNc                      t        | ddiS Nr   F)r    argss    V/var/www/html/venv/lib/python3.12/site-packages/sympy/parsing/tests/test_latex_lark.py_MinrO   "       %u%%    c                      t        | ddiS rK   )r!   rL   s    rN   _MaxrS   &   rP   rQ   c                 J    |t         k(  rt        | d      S t        | |d      S )NFr   )r
   r   )r6   r7   s     rN   _logrU   *   s%    Av1u%%1a%((rQ   x_0zx_{0}zx_{1}x_azx_{a}zx_{b}zh_\thetaz	h_{theta}z
h_{\theta}zy''_1zy_{1}''zy_1''z
\mathit{x}r3   z\mathit{test}testz\mathit{TEST}TESTz\mathit{HELLO world}zHELLO world)0r   )1r=   )z-3.14gQ	(-7.13)(1.5)gQg      ?1+10+11*2   0*12xz3x - 1   z-cz\inftyz	a \cdot b1 \times 2 za / bza \div bza + bz	a + b - az	(x + y) zza'b+ab'za'zb')r\   gp=
c%)r]   r`   )r^   r=   )r_   r`   )ra   r   )re   r`   z\frac{a}{b}z\dfrac{a}{b}z\tfrac{a}{b}z\frac12z\frac12y	\frac1234"   z	\frac2{3}z\frac{a + b}{c}z\frac{7}{3}   )rf      zx = yzx \neq yzx < yzx > yzx \leq yzx \geq yzx \le yzx \ge yza^2 + b^2 = c^2zx^2zx^\frac{1}{2}z	x^{3 + 1}z
\pi^{|xy|}pi	5^0 - 4^0      )rk   r   z	\int x dxz\int x \, dxz\int x d\thetaz\int (x^2 - y)dxz\int x + a dxz\int daz\int_0^7 dxz\int\limits_{0}^{1} x dxz\int_a^b x dxz\int^b_a x dxz\int_{a}^b x dxz\int^{b}_a x dxz\int_{a}^{b} x dxz\int^{b}_{a} x dxz\int_{f(a)}^{f(b)} f(z) dzz\int a + b + c dxz\int \frac{dz}{z}z\int \frac{3 dz}{z}z\int \frac{1}{x} dxz!\int \frac{1}{a} + \frac{1}{b} dxz\int \frac{1}{x} + 1 dxz\frac{d}{dx} xz\frac{d}{dt} xz\frac{d}{dx} ( \tan x )z\frac{d f(x)}{dx}z\frac{d\theta(x)}{dx}r>   z\sin \thetaz\sin(\theta)z\sin^{-1} az\sin a \cos bz\sin \cos \thetaz\sin(\cos \theta)z(\csc x)(\sec y)z\frac{\sin{x}}2z\lim_{x \to 3} az+-)dirz\lim_{x \rightarrow 3} az\lim_{x \Rightarrow 3} az\lim_{x \longrightarrow 3} az\lim_{x \Longrightarrow 3} az\lim_{x \to 3^{+}} a+z\lim_{x \to 3^{-}} a-z\lim_{x \to 3^+} az\lim_{x \to 3^-} az\lim_{x \to \infty} \frac{1}{x}z\sqrt{x}z\sqrt{x + b}z\sqrt[3]{\sin x}z\sqrt[y]{\sin x}z\sqrt[\theta]{\sin x}z\sqrt{\frac{12}{6}}      zx!z100!d   z\theta!z(x + 1)!z(x!)!zx!!!z5!7!z\sum_{k = 1}^{3} cz\sum_{k = 1}^3 cz\sum^{3}_{k = 1} cz\sum^3_{k = 1} cz\sum_{k = 1}^{10} k^2
   z"\sum_{n = 0}^{\infty} \frac{1}{n!}z\prod_{a = b}^{c} xz\prod_{a = b}^c xz\prod^{c}_{a = b} xz\prod^c_{a = b} xzf(x)zf(x, y)z
f(x, y, z)zf'_1(x)zf_{1}'zf_{1}''(x+y)zf_{1}''zh_{\theta}(x_0, x_1)z|x|z||x||z|x||y|z||x||y||z\lfloor x \rfloorz\lceil x \rceilz\exp xz\exp(x)z\lg xz\ln xz\ln xyz\log xz\log xyz
\log_{2} xz
\log_{a} xz\log_{11} x   z\log_{a^2} xz\log_2 xz\log_a xz\overline{z}z\overline{\overline{z}}z\overline{x + y}z\overline{x} + \overline{y}z
\min(a, b)z\min(a, b, c - d, xy)z
\max(a, b)z\max(a, b, c - d, xy)z\langle x |z| x \ranglez\langle x | y \rangler4   za \, bza \thinspace bza \: bza \medspace bza \; bza \thickspace bz	a \quad bz
a \qquad bza \! bza \negthinspace bza \negmedspace bza \negthickspace bz\binom{n}{k}z\tbinom{n}{k}z\dbinom{n}{k}z\binom{n}{0}zx^\binom{n}{k}z\left(x + y\right) zz\left( x + y\right ) zz\left(  x + y\right ) zc                      ddh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 y # 1 sw Y   DxY w)Nrr   rh   F)	enumerateSYMBOL_EXPRESSION_PAIRSr   r   expected_failuresi	latex_str
sympy_exprs       rN   test_symbol_expressionsr~     sw    A&/0G&H H""Iz!!e_ 	H#I.*<GiG<	H 	HH	H 	H   AA	c                     dh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 t        t              D ]"  \  }\  }}|| v rt        |      |k(  rJ |        y # 1 sw Y   xxY w)N   F)rw   #UNEVALUATED_SIMPLE_EXPRESSION_PAIRSr   r   !EVALUATED_SIMPLE_EXPRESSION_PAIRSry   s       rN   test_simple_expressionsr     s    &/0S&T H""Iz!!e_ 	H#I.*<GiG<	H 	HH '00Q&R D""Iz!!	*j8C)C8D	H 	H   BB	c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wNF)%UNEVALUATED_FRACTION_EXPRESSION_PAIRSr   r   #EVALUATED_FRACTION_EXPRESSION_PAIRSr|   r}   s     rN   test_fraction_expressionsr         !F H	:e_ 	H#I.*<GiG<	H 	HH "E D	:	*j8C)C8D	H 	H   AA&	c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   )RELATION_EXPRESSION_PAIRSr   r   r   s     rN   test_relation_expressionsr     sV    !: H	:e_ 	H#I.*<GiG<	H 	HH	H 	H	   :A	c                     dh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 t        t              D ]"  \  }\  }}|| v rt        |      |k(  rJ |        y # 1 sw Y   xxY wNrc   F)rw   "UNEVALUATED_POWER_EXPRESSION_PAIRSr   r    EVALUATED_POWER_EXPRESSION_PAIRSry   s       rN   test_power_expressionsr     s    &/0R&S H""Iz!!e_ 	H#I.*<GiG<	H 	HH '00P&Q D""Iz!!	*j8C)C8D	H 	Hr   c                     dh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 t        t              D ]"  \  }\  }}|| v rt        |      |k(  rJ |        y # 1 sw Y   xxY w)N   F)rw   %UNEVALUATED_INTEGRAL_EXPRESSION_PAIRSr   r   #EVALUATED_INTEGRAL_EXPRESSION_PAIRSry   s       rN   test_integral_expressionsr     s    &/0U&V @""Iz!!e_ 	@#I.*<?a?<	@ 	@@ '00S&T D""Iz!!	*j8C)C8D	@ 	@r   c                     ddh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 t        t              D ]"  \  }\  }}|| v rt        |      |k(  rJ |        y # 1 sw Y   xxY w)Nrc   rm   F)rw   DERIVATIVE_EXPRESSION_PAIRSr   r   ry   s       rN   test_derivative_expressionsr     s    A&/0K&L H""Iz!!e_ 	H#I.*<GiG<	H 	HH '00K&L D""Iz!!	*j8C)C8D	H 	Hs   BB	c                      dh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 y # 1 sw Y   DxY wr   )rw   TRIGONOMETRIC_EXPRESSION_PAIRSr   r   ry   s       rN   test_trigonometric_expressionsr     su    &/0N&O H""Iz!!e_ 	H#I.*<GiG<	H 	HH	H 	Hs   AA	c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   )"UNEVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   s     rN   test_limit_expressionsr     sV    !C H	:e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   )!UNEVALUATED_SQRT_EXPRESSION_PAIRSr   r   EVALUATED_SQRT_EXPRESSION_PAIRSr   s     rN   test_square_root_expressionsr     s    !B H	:e_ 	H#I.*<GiG<	H 	HH "A D	:	*j8C)C8D	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   )&UNEVALUATED_FACTORIAL_EXPRESSION_PAIRSr   r   $EVALUATED_FACTORIAL_EXPRESSION_PAIRSr   s     rN   test_factorial_expressionsr     s    !G H	:e_ 	H#I.*<GiG<	H 	HH "F D	:	*j8C)C8D	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   ) UNEVALUATED_SUM_EXPRESSION_PAIRSr   r   EVALUATED_SUM_EXPRESSION_PAIRSr   s     rN   test_sum_expressionsr     s    !A H	:e_ 	H#I.*<GiG<	H 	HH "@ D	:	*j8C)C8D	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   )$UNEVALUATED_PRODUCT_EXPRESSION_PAIRSr   r   r   s     rN   test_product_expressionsr   '  sV    !E H	:e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      h d} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 y # 1 sw Y   DxY w)N>   r   rc   rm   F)rw   !APPLIED_FUNCTION_EXPRESSION_PAIRSr   r   ry   s       rN   !test_applied_function_expressionsr   ,  ss    !&/0Q&R H""Iz!!e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   ),UNEVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   r   *EVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   s     rN    test_common_function_expressionsr   7  s    !M H	:e_ 	H#I.*<GiG<	H 	HH "L D	:	*j8C)C8D	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   ) SPACING_RELATED_EXPRESSION_PAIRSr   r   r   s     rN   test_spacingr   @  sV    !A H	:e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   )%UNEVALUATED_BINOMIAL_EXPRESSION_PAIRSr   r   #EVALUATED_BINOMIAL_EXPRESSION_PAIRSr   s     rN   test_binomial_expressionsr   G  r   r   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   )MISCELLANEOUS_EXPRESSION_PAIRSr   r   r   s     rN   test_miscellaneous_expressionsr   P  sV    !? H	:e_ 	H#I.*<GiG<	H 	HH	H 	Hr   )sympy.testing.pytestr   sympy.parsing.latex.larkr   sympy.externalr   sympy.concrete.productsr   sympy.concrete.summationsr   sympy.core.functionr   r	   sympy.core.numbersr
   r   r   sympy.core.powerr   sympy.core.parametersr   sympy.core.relationalr   r   r   r   r   sympy.core.symbolr   (sympy.functions.combinatorial.factorialsr   r   $sympy.functions.elementary.complexesr   r   &sympy.functions.elementary.exponentialr   r   #sympy.functions.elementary.integersr   r   (sympy.functions.elementary.miscellaneousr   r   r    r!   (sympy.functions.elementary.trigonometricr"   r#   r$   r%   r&   r'   sympy.integrals.integralsr(   sympy.series.limitsr)   r*   r+   r,   r-   r.   r/   sympy.physics.quantumr0   r1   r2   	sympy.abcr3   r4   r5   r6   r7   r8   r9   r:   r;   r<   
test_latexr>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   disabledrO   rS   rU   rx   r   r   r   r   r   r   r   r   r   r   r   r    EVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   r   r   r   r   r   r   r   r   r   r   r   r~   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    rQ   rN   <module>r      s   & 5 ( + ) 4 . .   * f f $ H ? ; > I I R R . % 8 8 8 8 2 2 2 h h h hV 4<&&  ) VG_vgVG_vg&%&F;'(vi !vi !F3K vf~&vf~&f]34   d5#&'T!QZT!QZT!QZT!QZ	1I
AENT!QZ$%
QBKO1q5T!QZ q1u!a%q1u4Ar?#4Q
A&'d6$<+T!VD\-BCD+' #2 
AENA	
QBK1q5q1u!a%q1u1AEQ;% !& QUa!ea!eaa%&$tAtAr{+Q/04QQ,b12442;'(a!eT!R[12T!T!R[)*
) % QUa!ea!e!Q !a%8Aq>"!a%1%Xa^$
' # r!Qx"Q(r!Qxr!Qx"Q("Q(AqAq~a#$(1a.! A&'+a#$*Q"#AqD1a4KA./ $ Q!VtAtAtAr{3451Q
?#F4LDQK/04Q
DT!QZ$89:& " Q!VtAw16F4LDQK/0$   8DAJ*+htAqz1-.aU34(416A:#6:;xQQ
 3Q78$q!*a()Xd1aj1a)45 (41:1ay"ABxQ
Q1I67xQ
Q1I67$q!*q!Qi89$q!*q!Qi898DAJAq	:;8DAJAq	:;"HQqTAqtQqT?$CD8DDaQ,?$@!DE8DDC2J,?$@!DEXd1d1d1bk.B&CQGHXd1d1c!Rj.A&BAFG)d1d442;/aQ1DEFJL$q$tAtAr{7KQ2O*PRS!TU-) %4 8Aq>"hq!n%E*+(16A:q12xAq)*!Q Xa!Q+, (1q!Qi"89xAq!9-.xAq!9-.!aAY/0!aAY/08A1ay128A1ay12"HQqTAqtQqT?$CD8AEAIq128C2J23Xa#a*na89Xa!eQ/0)8AEAEM1+EF!a%!)Q!78+' #2 
1a()
1a()CFA!67:adA./z*;(7*;A*>BC  SZ c%j!T!WtCFCF+,#c%j/*3s5z?+#a&3q6/*c!fd1bk23	"  %1aT23 %1aT":; %1aT":;$eAq!&>?$eAq!&>?eAq!56eAq!56E!Qs34E!Qs34'tAtAr{/CQ)KL& " (q1ua)<=$  
 $q'd41:&'$s1vtAr{34 $s1vq/*tCFE23U4DBK#89:	% ! $q'd1q5k"$s1vq/*$s1vq/*tCFE23T!W%#  JqMjoE"#*T!QZ()z*Q-()jJqM234d:a=*Q-01* & IaLin5!")AE"#y1&'i	)A,/01ilYq\)*( $ CQ
Q1I67#d1aj1a)45CQ
Q1I67#d1aj1a)45s416?Q2J?@*aajmR01	2Q2J?A$   CAq!9-.#a!Q+,CAq!9-.#a!Q+,s16Aq":67*CIaL0@1a*,MN"  WQAq	2371q!Qi01WQAq	2371q!Qi01	( $ adO1aAaAJ#(#A&')hy)!a%01Xk6'?F7O<>% ! T!WtCF|Q$q'!"$tAwa()*58$$QatAr{tAwQUQa!eDAJDAJT!R[!d1d1aj)*$q!*$q!*jm$JqM!:;*T!QZ01#Z]Z]%BCDAJtAq!a%Q78DAJtAq!a%Q78SXSX|CHc#h?@? 0 ,F SVs3q6{AQ #c!fs1vo&'58$$AQs1bzs1vAE
AQUC1IC1ISBZ c!T!QZ()#a)#a)il#9Q<!89)AE*+#Yq\IaL%@AC1Is1aQA67C1Is1aQA67SXSX|CHc#h?@=. *D Q
Q
#Q
tAqz"Q
a$41:DAJQ
41:&$q!*%DAJ'$    i1o&yA'yA'i1o&Q	!Q01) % hq!n%x1~&x1~&hq!n%Xa^+,' # d41:q12T!QZ 34d1aj!!45" HDDH
DDDHHDDDH
 H HD H HDHrQ   