
    sg                     R    d dl mZmZmZ d dlmZmZmZmZm	Z	 d dl
mZ d Zd Zd Zy)    )SpiRational)hermitesqrtexp	factorialAbs)hbarc                    t        t        | |||g      \  } }}}||z  t        z  }|t        z  t	        dd      z  t        dd| z  t        |       z  z        z  }|t        | |dz  z  dz        z  t        | t        |      |z        z  S )aJ  
    Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator.

    Parameters
    ==========

    n :
        the "nodal" quantum number.  Corresponds to the number of nodes in the
        wavefunction.  ``n >= 0``
    x :
        x coordinate.
    m :
        Mass of the particle.
    omega :
        Angular frequency of the oscillator.

    Examples
    ========

    >>> from sympy.physics.qho_1d import psi_n
    >>> from sympy.abc import m, x, omega
    >>> psi_n(0, x, m, omega)
    (m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4))

             )	mapr   r   r   r   r   r	   r   r   )nxmomeganuCs         G/var/www/html/venv/lib/python3.12/site-packages/sympy/physics/qho_1d.pypsi_nr      s    8 Q1e,-NAq!U	
UT	B	B!Q$q!Q$y|*;'<"==AsB319a<  71d2hqj#999    c                 <    t         |z  | t        j                  z   z  S )a  
    Returns the Energy of the One-dimensional harmonic oscillator.

    Parameters
    ==========

    n :
        The "nodal" quantum number.
    omega :
        The harmonic oscillator angular frequency.

    Notes
    =====

    The unit of the returned value matches the unit of hw, since the energy is
    calculated as:

        E_n = hbar * omega*(n + 1/2)

    Examples
    ========

    >>> from sympy.physics.qho_1d import E_n
    >>> from sympy.abc import x, omega
    >>> E_n(x, omega)
    hbar*omega*(x + 1/2)
    )r   r   Half)r   r   s     r   E_nr   *   s    : %<1qvv:&&r   c                 n    t        t        |      dz   dz        || z  z  t        t        |             z  S )a  
    Returns <n|alpha> for the coherent states of 1D harmonic oscillator.
    See https://en.wikipedia.org/wiki/Coherent_states

    Parameters
    ==========

    n :
        The "nodal" quantum number.
    alpha :
        The eigen value of annihilation operator.
    r   )r   r
   r   r	   )r   alphas     r   coherent_stater   J   s5     UQq !5!8,T)A,-???r   N)
sympy.corer   r   r   sympy.functionsr   r   r   r	   r
   sympy.physics.quantum.constantsr   r   r   r    r   r   <module>r$      s&    & & > > 0!:H'@@r   